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Abstract

In this paper, we consider and study a class of vector variational-like

inequalities in Banach space without any generalized monotonicity by

exploiting vector version of minimax inequality and obtain the

existence results of solutions to the class of vector variational-like

inequalities. The results presented here are different from [1, 5, 11],

and extend and generalize the corresponding results in [7].

1. Introduction

A vector variational inequality in a finite-dimensional Euclidean
space was first introduced by Giannessi [6] in 1980. This is a
generalization of a scalar variational inequality to the vector case by
virtue of multi-criterion consideration. Later on, vector variational
inequalities have been investigated in abstract spaces, see [2, 3, 9]. It is
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worth noting that vector variational-like inequalities are important
generalization of vector variational inequalities related to the class of

connected-η  sets which is much more general than the class of convex

sets (see [8, 10, 11]). Moreover, Under the monotonicity conditions, the
authors in [1, 5, 11] studied the vector variational (variational-like)
inequalities by using K-Fan lemma. On the other, without any
generalized monotonicity, the vector variational inequalities are studied
by using the Brouwer and Browder fixed pointed theorems in [1, 5],
respectively and in [7], Lai and Yao studied the existence of solutions of
the vector variational inequalities by minimax inequality due to Fan [4].

Inspired and motivated by the above research work, we study the
existence of the solutions of vector variational-like inequalities without
any monotonicity by using vector version of minimax inequality. The
results obtained in this paper are different from the corresponding
results in [1, 5, 11] and extend and generalize the corresponding results
in [7].

2. Preliminaries

Let X be a Banach space. A nonempty subset P of X is called a
pointed, convex cone if PtPPPP ⊂⊂+ ,  for all 0≥t  and

( ) { }.0=−PP ∩  The partial order "" ≤  on X induced by a pointed cone is

defined by declaring yx ≤  if and only if Pxy ∈−  for all ,, Xyx ∈  and

in this case P is called a positive cone in X. Furthermore, if such a partial
order is induced by a convex cone, it is called a linear order. A ordered
Banach space is a pair ( ),, PX  where X is a real Banach space and P is a

pointed convex cone. With linear order induced by P, the weak order "" </

on ordered Banach space ( )PX ,  with ∅≠Pint  is defined as yx </  if
and only if intxy ∈/− P for all Xyx ∈,  where “int” denotes the interior.

Let X and Y be real Banach spaces. ( )YXL ,  is the space of all

bounded linear mappings from X into Y . We denote by ( )xl,  the value of

( )YXLl ,∈  at .Xx ∈  Let K be a nonempty closed and convex subset of

( )YXLKTX ,:, →  be a single-valued mapping, and a set-valued

mapping YKC 2: →  be such that ( )xC  is a closed, pointed and convex
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cone of Y with ( ) ∅≠xCint  for all Kx ∈  and XKK →×η :  be two

vector- valued mapping. In this paper, we consider the vector variational-
like inequality problem, (denoted by VVIP) that is to find Kx ∈  such

that

( )( ) ( ) .,,, KyxintCxyTx ∈∀−∈/η (2.1)

When ( ) PxC =  for all Kx ∈  and ( )PY ,  is an ordered Banach space

with weak order, ( )VVLI  becomes ( ) ,VVLI ′  that is to find Kx ∈  such

that

(( )) .,0,, KyxyTx ∈∀</η  (2.2)

Furthermore, when ( ) ( )VVLI,, xyxy −=η  reduces to ( ),VVI  that is to

find Kx ∈  such that

( ) ( ) .,, KyxintCxyTx ∈∀−∈/− (2.3)

Lai and Yao [7] stduied the existence of solution of vector variational-
like inequalities (2.3) by minimax inequality in the case of
nonmonotonicity conditions. In our paper, we study the existence results
of (VVLI), which extend and generalize the results of [7] and different
from the results of [1, 5, 11].

3. Main Results

In this section, we state and prove the existence results for vector
variational-like inequalities without any generalized monotonicity
assumption. To this end, the following result will be used.

Lemma 3.1 [4]. Let E be a nonempty compact convex set of a
Hausdorff topological vector space. Let A be a subset of EE ×  having the
following properties:

(i) ( ) Axx ∈,  for all ;Kx ∈

(ii) for each ,Ex ∈  the set ( ){ }AyxEyAx ∈∈= ,  is closed in E;

(iii) for each ,Ey ∈  the set ( ){ }AyxExAy ∈/∈= ,  is convex.
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Then there exists Ey ∈0  such that { } .0 AyE ⊂×

Now we can state and prove the main results of this paper.

Theorem 3.2. Let X and Y be real Banach spaces. Let K be nonempty

weakly compact convex subset of X. Let YKC 2: →  be a set-valued
mapping such that for all ( )xCKx ,∈  is a closed, pointed and convex

cone in Y with ( ) ,∅≠xCint  and a set-valued mapping YKW 2: →  be

defined by ( ) ( ( ))xCintYxW −= \  such that the graph of W denoted by

gphW  is weakly closed in .YX ×  Let ( )YXLKT ,: →  be a single-

valued mapping such that for all ,Kx ∈  the mapping (( ))yxTyy ,, η6

is continuous from the weak topology of K to the weak topology of Y. Let
XKK →×η :  be a vector-valued mapping such that

(a) ( ) ;,0, Kxxx ∈∀=η

(b)  ( )yx,η  is affine with respect to x if, for any given ,Ky ∈

( ( ) ) ( ) ( ) ( ) ,,,,,1,,1 212121 RtKxxyxtyxtyxttx ∈∈∀η−+η=−+η

with ( ) .1 21 Kxttxx ∈−+=  Then there exists Kx ∈0  such that

( ( )) ( ) .,,, 000 KxxCintxxTx ∈∀−∈/η  

       Proof. Let {( ) ( )( ) ( )}.,,, yCintyxTyKKyxA −∈/η×∈= Then, it

is clear that ( ) Axx ∈,  for each .Kx ∈  Next we show that for each

,Kx ∈  the set { ( ) }AyxKyAx ∈∈= ,  is weakly closed. To this end,

let { }αy  be a net in xA  converging weakly to some .Ky ∈  For each ,α

since ( ) ,, Ayx ∈α  we have

  ( )( ) ( )α−∈/η αα yCintyxTy ,,  or ( ( )) ( ( )).\,, α−∈η αα yCintyyxTy

By assumption, ( )( )αα η yxTy ,,  converges weakly to ( )( ).,, yxTy η  Since

gphW  is weakly closed in YX ×  we have

( )( ) ( )( ) ( )( ) ( ).,,or\,, yCintyxTyyCintYyxTy −∈/η−∈η

Thus, xAy ∈  and consequently xA  is weakly closed.
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Finally, we show that for each ,Ky ∈  the set

( ){ }AyxKxAy ∈/∈= ,  is convex. To this end, let yAxx ∈21,  and

0,0 21 ≥≥ tt  with .121 =+ tt  Then, yA  is convex. Since

( )( ) ( ),,, 11 yCintyxtTy −∈η

( )( ) ( ).,, 22 yCintyxtTy −∈η

As ( )yC  is convex cone and the condition of (b), we have

( ( )) ( )yCintyxtxtTy −∈+η ,, 2211

hence, ,2211 yAxtxt ∈+  and therefore yA  is convex.

Now by invoking Lemma 3.1, there exists Kx ∈0  such that

{ } .0 AxK ⊂×  This implies that Kx ∈0  and

( ( )) ( ) ,,, 000 KxxCintxxTx ∈∀−∈/η

which implies that the (VVLI) has a solution. This completes the proof.

We can derive the following corollary from Theorem 3.2.

Corollary 3.3. Let X and Y be real Banach spaces. Let K be a

nonempty compact convex subset of X. Let YKC 2: →  be a set-valued
mapping such that for each ( )xCKx ,∈  is a closed pointed and convex

cone and ( ) ,∅≠xCint  and YKW 2: →  be defined by

( ) ( ( )xCintYxW −= \  such that gphW  is weakly closed in .YX ×  Let

( )YXLKT ,: →  be continuous from the weak topology of K to the norm

topology of Y. Let XKK →×η :  be such that

(a)  ( ) ;,0, Kxxx ∈∀=η

(b)  ( )yx,η  is affine with respect to x if, for any given ,Ky ∈

( ( ) ) ( ) ( ) ( ) ,,,,,1,,1 212121 RtKxxyxtyxtyxttx ∈∈∀η−+η=−+η

with ( ) .1 21 Kxttxx ∈−+=  Then there exists Kx ∈0  such that

( ( )) ( )000 ,, xCintxxTx −∈/η for all ;Kx ∈
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(c)  ( )yxKx ,, η∈∀  is weakly continuous in the first argument.

Then there exists Kx ∈0  such that

( ( )) ( ) .,,, 000 KxxCintxxTx ∈∀−∉η

Proof. It suffices to check that for each ,Kx ∈  the mapping

( ( ))yxTyy ,, η6  is continuous from weak topology of K to the weak

topology of Y. To this end, let Kx ∈  be arbitrary but fixed, and let

YKTx →:  be defined by ( ( )) .,,, KyyxTyyTx ∈∀η=  Let { }αy  be any

net in K converging weakly to some .Ky ∈  By assumption, we have

( ) .0, →−α YXLTyTy  Since the net { }αy  is weakly convergent and the

condition of (c), it is bounded. Therefore,

( ( )) ( ) ( ) 0,,, , →η−≤αη− ααα XYXL yxTyTyyxTyTy

and hence ( ( ))αα η− yxTyTy ,,  converges weakly to 0 in Y. On the other

hand, as ( ) TyYXLTy ,,∈  is continuous from the weak topology of X to

the weak topology of Y. Consequently, we have

( ( )) ( ( )) ( ( ))αααααα η+η−=η= yxTyyxTyTyyxTyyTx ,,,,,,

converges weakly to ( ( )) .,, yTyxTy x=η  Hence the operator xT  is

continuous from the weak topology of K to the weak topology of Y. The

result then follows from Theorem 3.2.

From Corollary 3.3, we have the following result.

Corollary 3.4. Let X be a real Banach space, ( )CY ,  be an ordered

Banach space, where C is a pointed, closed and convex cone in Y with
( ) ,∅≠xCint  such that ( )CintY −\  is weakly closed. Let η,, TK  be as

in Corollary 3.3. Then there exists Kx ∈0  such that

( ( )) .,0,, 00 KxxxTx ∈∀</η

Remark 3.5. Theorem 3.2, Corollaries 3.3 and 3.4 extend and
generalize the corresponding results in [7].
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